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Intermittency and anomalous scaling for magnetic fluctuations
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The generation of magnetic fluctuations by turbulent flow of conducting fluid with a zero mean magnetic
field for small magnetic Prandtl numbers is studied. The equation for the high-order correlation functions of the
magnetic field is derived. It is shown that the growth rates of the higher moments of the magnetic field are
larger than those of the lower moments, i.e., the spatial distribution of the magnetic field is intermittent. The
problem of anomalous scaling of magnetic fluctuations is discussed as well. The turbulent fluid velocity field
is assumed to be homogeneous and isotropic with a power-law energy sputoportional tok —P) and with
a very short scale-dependent correlation time. It is found that magnetic fluctuations can be generated when the
exponentp>3/2. In addition, the effect of compressibilifie., V-u+#0) of the low-Mach-number turbulent
fluid flow u is studied. It is shown that the threshold for the generation of magnetic fluctuations by turbulent
fluid flow with V-u#0 is higher than that for incompressible fluid. This implies that the compressibility
impairs the generation of magnetic fluctuatiof81063-651X97)07406-(

PACS numbes): 47.65+a, 47.27.Eq

[. INTRODUCTION is derived. It is shown that the spatial distribution of the
magnetic field is intermittent. In addition, we study the effect
The problem of the generation of magnetic fluctuations byof compressibility(i.e., V-u#0) of the low-Mach-number

turbulent flow of conducting fluid is of fundamental impor- turbulent fluid flowu on the generation of magnetic fluctua-
tance in view of various applications in astrophysical andtions.
laboratory plasmagsee, e.g.[1-11]). Analytical and nu-
merical studigs of intermittency and the gent_eration of mag- Il. GOVERNING EQUATIONS
netic fluctuations by homogeneous, isotropic, and incom-
pressible turbulence with a zero mean magnetic field were In this section we describe dynamics of magnetic fluctua-
carried out mainly for magnetic Prandtl numbers,21  tions. The induction equation in a compressible., V-v
(see, e.g.[12-17). The study of magnetic fluctuations with #0) fluid flow reads
Pr,<<1 shows that magnetic fluctuations cannot be generated
by turbulent fluid flow with the Kolmogorov energy spec- JH
trum [18,19. In addition, in numerical simulations by =i PV V)H=(H-V)Vv=H(V-v)+ 7AH, (W
[20,21] the generation of magnetic fluctuations for,Rrl
were not observed.

) . . heren=c?/4mwo is the magnetic diffusiony is the electri-
However, in astrophysical plasmas the magnetic Prand 7 T g w

. . al conductivity, anat is the speed of light. We derive equa-
numbers is small (.BKl)' Th.us a mechanlsm_ for the.gen- tions for the mean field and for the high-order correlation
eration of magnetic fluctuations for 'E'gl stil rémains — nctions of the magnetic field. To this purpose we use the
poquy understood. Qn th? other hand, in astrophysical aF?pl'é,tochastic calculus that was applied in magnetohydrodynam-
cations (e.g., accretion disks, solar an.d stellar convection ¢ [15—-17 and passive scalar transport in incompressible
zones, and galaxigghe turbulent velocity field cannot be [15,16,22 and compressiblE23—25 turbulent flows. Mag-

considered as divergence-free. netic diffusion in this method is described by means of an

f In thg presgﬂt paper we study the .gefnelaa;longg rI:_‘E:gnet'ﬁverage over an ensemble of random Wiener trajectories.
uctuations .W't a z€ro mean magnetic field foRRrl. The  tq go)ytion of the induction equatiafl) with the initial
turbulent fluid velocity field is assumed to be homogeneou%Ondition H(t=to,X)=Hq(x) is given by a modified

and isotropic with a very short scale-dependent Correlatiorfﬂeynman-Kac formul15,16]
time. We have found that magnetic fluctuations can be gen- '
erated by turbulent motions of conducting fluid flow even
with the Kolmogorov energy spectrum R£1. The equation

for the high-order correlation functions of the magnetic field
g g where the functiorG;; is determined by the equation

Hl(t,x):M{G”(t,to)HOl[f(t,to)]}, (2)

*Present address: Department of Mechanical Engineering, The iG--(t tg) =N, Gy, @)
Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel. ds 10 k=kj
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with the initial conditionG;; = §;; for t;=t,. HereM{ } isa  and vector(magneti¢ field advected by a low-Mach-number
mathematical expectation over the ensemble of Wiener pathmompressible turbulent fluid flow. In particular, the com-

ts=t+s, pressibility results in the appearance of a new term in the
equation for the mean number density of particles. The new
N :ﬂ_a V.v ) term describes an additional nondiffusive turbulent flux of
K%, kT particles due to compressibilityv( u#0) of fluid [23,24].
_ o This causes the formation of the large-scale inhomogeneous
and the Wiener patl;= &(t,to) is given by spatial distributions of the mean number density of particles.
. The technique of path integrals allows us also to derive
§t:X—f V(tg, &) ds+ \/Z_nw(t), (5) the equation for the second-order correlation function
o h|J:<h|(t,X)hJ(t,y)>
wherew; is a Wiener process. Equati¢b) describes a set of ohij . N N
the random trajectories that pass through the poiat time .~ LX) Gjs+Lsj(y) b+ Mijeshust 1y (12)
t. The use of this technique of path integrals allows us to
derive the equation for the mean magnetic fiBld (H), (for details see the Appendixwhere the turbulent compo-
B nent of the magnetic field is(t,x) =H(t,x) —B(t,x) and
J
E:VX(VeﬁXB)+Vi(77imeB+Bin<7'UkU> R d R J
I-ij:*eiksﬁ Ssmjum+asj_775n18mpj_ ) (13
K 8Xp
_ZBk<TUinU>) (6)
2 . .
(see details in the Appendixwhere EM.k =5 isf r__ 5.k‘9fm1 s @ 9
2 UKs TIKEISTMN gy IYn K AYs X 13 Xk dYn
=N0ymt (TUyUn), 7
Tpm= 1 3pm+ { TUpUm) @) RTINS B P
Vegr=V—{(7u(V-u)), (8) IXdYs K ay, Xy KIS g%, dy,
7 is the scale-dependent momentum relaxation time, s Al _s #fip LSS ar (14
V=(v) is the mean velocity field, and the angular brackets K axpdys  Saxedy, I axpdy,’
mean statistical averaging. We introduce a tensgy and a
vectorg, lij = MijksBk(X)Bs(Y), (19
mn= (&mji TU; VaUj) + &ji{ 7Ui V iquj)) /2, @ frn=(run(X)un(y)), andUy,=(Uer)m. We seek a solution
for the second moment of the magnetic field in the form
qm=<7um(v' u)>_vn77nm/21 (10
. . . . rw’ Mmfn
which satisfy the identity (hm(X)hp(X+1)y=W(r) Spnt - Son— ek (16)

(70U V) = (Zimetmn ™ Gl = SinGict V1) /2, This form of the second moment corresponds to the condi-

where 8, is the Kronecker tensor angly, is the Levi- tion V-h=0 and an assumption of the homogeneous and
Civita tensor. The tensaky, describes ther effect. In iso- ~ iSOtropic magnetic fluctuations. Multiplying E¢12) by
tropic turbulence(u;u;)=(u®)&; /3 and Eq.(9) reduces to ifj/r” and using the identitie¢A14)—(A19) (see the Ap-
the well-known formula for thex effect (see, e.g.[1-4]), PendiX¥ yields the equation for the correlation function
aj;=—(ru(VXu))é;/3. Equation(10) for the vectorq in W(r,t)=(h(x,t)h(y,1)):

the case of incompressible isotropic turbulence coincides

with the well-known formula for the velocity that describes wW_ EW/IJFMV\// BARYY (17)
turbulent diamagnetisrisee, e.9.[26,4]). Using Eqs(9) and at.m m-’

(10), we rewrite Eq.(6) for the mean magnetic field as ) o o
where h is the projection of the magnetic field on the

B - - directionr=x—y and

— =VX(UggXB+aB—75VXB), (11

ot

L2 +2[1 F—(rF¢o)’]

~ ~ —_— T — —_— _ — r s
where 7]:(7]pp5ij_77ij)/2, a=ajj, and m Rm 3 ¢
Uer=V — V(7upu)/2. Equation(11) is the induction equa- .
tion for the mean magnetic field in a low-Mach-number com- _ i+ i o 2_m(f,+2f,)
pressible turbulent fluid flow. This equation coincides in K mr \m) r ¢
form with that for incompressible turbulent fluid floggee,
e.g.,[1-4]). Therefore, compressibility does not change the f=F+rF'/3, f.=F.+rF/3,

form of the induction equation for the mean magnetic field.
This fact demonstrates a difference between the problems &m=ugly/#>1 is the magnetic Reynolds numbag, is the
evolution of the scalar fieldhe number density of particles characteristic velocity in the maximum scdleof turbulent
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’

motions, and-’' =dF/dr. Here we consider a homogeneous,
isotropic, and reflectionally invariaritvith zero mean helic- ~ {Um(t,X)U,(t",X+1))=46 2r0 (Um(X)up(x+r1)), (22
ity) compressible turbulent fluid velocity field. In this case

the correlation functio 7unu,) is given by where 7(r) is the scale-dependent momentum relaxation

time. It follows from Eq.(22) that

<TUm(X)Un(X+I’)>= 71| [F(r)+F(r)]omn

rE’ Mmfn Mmfn
+—| 8,— —|+rF!
2 ( mn I’2 c I’2

fw<um(t,x)un(t’,x+ r)dt’ =(run(X)u,(x+r)).
0

Using the §-correlated-in-time random process allows us to
(18 provide the analytical calculations and to obtain closed re-

sults for the growth rate of the high-order correlation func-
(for details seq23]), where F’=dF/dr, 7r=u370/3 iS tions of the magnetic field, the threshold of the generation of
the turbulent magnetic diffusionzo=1y/ug, and F(0)  the magnetic fluctuations, and their anomalous scaling. The
=1-F(0). ThefunctionF(r) describes the compressible results remain valid also for the velocity field with a finite
(potentia) component, whereds(r) corresponds to the vor- correlation time if the high-order correlation functions of the
tical part of the turbulence. Equatidd?) is written in di-  magnetic field vary slowly in comparison to the correlation
mensionless variables: Coordinates and time are measuredtifme of the turbulent velocity fieldsee, e.g.[28,15,16). We
the unitsl, and 7y, the velocity is measured in the units also take into account the dependence of the momentum re-
Ug, and the magnetic field is measured in the uBigs By  laxation time on the scale of the turbulent velocity field:
means of Eq(17) we will study the generation of magnetic 7(k)= r,(k/k,)* P, wherep is the exponent in the spectrum
fluctuations(see Sec. Il of kinetic turbulent energyk is the wave number, and

The technique of path integrals that is described in th&,=I,*. The equations derived for the high-order correla-

Appendix also allows us to derive the equation for the high+jon functions are valid as long as the momentum relaxation
order correlation functio@iai}(t,x{l})=<Hjs:1haj(t,x(”)>: time of the velocity field is small in comparison to the char-
acteristic time of variations of the magnetic fluctuations.

acb{saj} s e
+ E LaJ H ) 5aq‘bs P Ill. GROWTH OF MAGNETIC FLUCTUATIONS
gt {21 “kpgsip# P
s s-1 s Let us study the evolution of magnetic fluctuations in a
_ i mer L) low-Mach-number compressible turbulent fluid flow. A
=> > M [ simel (19 . . \ oW,
11 %% mn=in#jq % S mechanism of the generation of magnetic fluctuations with a
_ zero mean magnetic field was proposed by Zeldovich and
where{a;}=ajay, ... a5, xXW=xDx®, . xO), and co-workers (see, e.g.[16,29) and comprises stretching,

in Egs. (13 and (14 we change [, —[% and twisting, and folding of the original loop of a magnetic field.
R N . “k These nontrivial motions are three dimensional and result in
qukp*MaLa‘;- Now we consider the case of a zero meanan amplification of the magnetic field. The magnetic diffu-

magnetic fieldB=0. When the mean fiel®+0 a source Sion leads to the reconnection of the field atXxapoint.
1@} (which depends oB and on the structure functions of ~ The generation of magnetic fluctuations can be described

the lower ordersappears in Eq(19). We seek a solution to by Eq.(17) for the second moment of the magnetic field. We

Eg. (19 in the form seek a solution of Eq17) in the form
@) _TT o _W(r)ym
q)saj _ H q;gl“k(x(')—x(k))exq ')’st), (20) W(t,l’)— r—zexq ’yt), (23)
wherei #j. Substitution of Eq(20) into Eq. (19) yields where the unknown functiod (r) is determined by
2
s(s—1) 1 dw B

Equation (21) implies that if the second-order correlation and

function of the magnetic field growsyg>0), then all high- )

order correlation functions grow. It is shown in Sec. Ill that i)

under certain conditiong,>0. Note that the higher mo- m/

ments grow faster than the lower moments of the magnetic

field. Therefore, the spatial distribution of the magnetic fluc- We consider the case of small magnetic Prandtl numbers

tuations is intermittenti.e., ys>sy,/2). This is in agree- Pr,=v/7<1, which is typical for many astrophysical and

ment with a dynamo theorefi27,15,16. geophysical applications, wheteis the kinematic viscosity.
We use in the present paper thecorrelated-in-time ran- The latter allows us to consider magnetic fluctuations only in

dom process to describe a turbulent velocity field: the inertial range of the turbulent velocity field. We choose

U(r)=

4
2 ’ ——
4m(r)(X +2x' +4k), x(r) ; +m
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the following model of turbulence. Incompressilfi¢r) and  Solutions in these different regions can be matched at their
compressiblé=.(r) components in the inertial range of tur- boundaries. Note that the most important part of the solution

bulencer <1 are given by is localized in small scale@.e.,r<1). The results obtained
. . by this asymptotic analysis are presented below. The solution
F(r)=(1—¢)(1—-r97%), Fc(r)=¢(1-pr ), of the Schrdinger equation(24) has the discretdfor

U(r)<0] and continuougfor U(r)>0] spectra. The dis-
crete spectrum describes the self-excitation of magnetic fluc-
tuations (y,>0), while the continuous spectrum corre-
sponds to the dissipation of magnetic energy<<0). The
solution of Eq.(24) has three characteristic regions.

In region |, i.e., for <=r<Rm Y"1 the masan(r),
the potentiall(r), and the functionN(r) are given by

wherery<r<1, ( is the exponent in the spectrum of the
function (runu,), rq=Re YCGP) p is the exponent in
the spectrum of kinetic turbulent energy, and
Re=ugly/v>1 is the Reynolds number. Thus the functions
m(r), x(r), and(r) for r<1 are given by

1 2
—= ﬁ[lJr,BmRmrq*l], Kk(r)=—2miora=3,

m(r) 2 )
25 _— a-
(=214 X (26)
X r = — — — y 1 2
where
. P W(r)=A,mY% =323, [ 2\ ko Rmr 23],
€
E — + =
P 3(1 e)(1tqo), o 1-¢’ whereA=3/(q—1), J, is the Bessel function of the first
kind, and the coefficienf; is given by
1
KO:§(1—8)(1+20‘)(2+Q)(q—1). . _\FF q+2 3 A
! Rm q_l )\\ KoRm .

Note that the exponerg in the spectrum of kinetic tur-
bulent energy differs from that of the functigmu,u,) due
to the scale dependence of the momentum relaxation tim,
7 of the turbulent velocity fieldu. The relation betweep
andg can be found as follows. The spectrum function of the
turbulent magnetic diffusion is defined as

The correlation functionV(r) for r<Rm~ =1 js given by
W(r)=1—B,Rmro—1, whereBo= B+ xko(q—1)/(q+2).
In region I, i.e., for Rm Y@ YD<r<1,

~2Bpr 1+ (BRI 7,

n(k)=7(K)E(k), (27 m(r)
where k is the wave numberE(k)xk™P is the spectrum 1+4b? 5 q°—4\(3+0(4—q)
function of the turbulent velocity field, 7(k) is the scale- U(r)~—= -7, =\ Trqo )’ (29)
dependent momentum relaxation time, andu?)
= [, E(k)dk. Consider a Kolmogorov-type turbulence. For W(r)=A,mY% ~32cog binr + ¢q). (30)
this turbulence the energy flux over the spectrum is constant,
1e., In region Il (r>1),

E(k)k ) 29 1
———=const. - A2

Equations(27) and(28) yield 7(k)<E2(k)k=k!~2P. For ho- ~ ~
mogeneous and isotropic fields the scale-dependent turbulent W(r)=Agr (N7 +r Hexp—[yIr).

magnetic diffusion is given b
gnetic dirision Is giv 4 Matching functionsN(r) andW’(r) at the boundaries of

=sin(kr) these regions yields the consté#qt, ¢, and the growthor
7(r)=(7u(x) - u(x+ f)>=f i 7kdk damping rate y,= y of the magnetic fluctuations. The latter
0 is given by

Thus we obtain thatj=2p— 1. Note that ifp>3/2, the ex-

ponentg>2. We will see in this section that the magnetic y=

fluctuations can be generatedgif-2. 4(9—1)
The solution of Eq.(24) can be obtained using an

asymptotic analysigsee, e.g[15,17,23,2%. This analysisis Where the critical magnetic Reynolds number ®his given

based on the separation of scales. In particular, the solutiocBy

of the Schrdinger equation(24) with a variable mass has

different regions where the forms of the potentia(r), Rm<°’)zex;{q

_1( k+arctan 2 +arctars
massm(r), and therefore eigenfunctions(r) are different. b | ™ arcta 2b arcta

4b%+(4—q)> [ Rm
- "\ Rfe )"

: (31)
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that the increase of the growth of the magnetic fluctuations
due to the compressibility of the fluid floggee below. Note
also that the scale of the localization of the magnetic fluc-
tuations increases when the degree of the compressibility
increases[see EQ.(32)]. On the other hand, the scale-
dependent turbulent magnetic diffusion increases with the
increase of scale. Thus the compressibility impairs the gen-
eration of magnetic fluctuations fay>2 (see below.

The generation of magnetic fluctuations depends on the
form of solution for the correlation functioV(r) in the
100 - : , ‘ second region RmM@~Y<r<1 (i.e., in the inertial range of

2 4 6 8 ° the turbulence The form of the solution depends on the

value m(r)U(r)e«—(b?+1/4) (see, e.g.,[30]). When

FIG. 1. Dependence of the critical magnetic Reynolds numbeg,2~. o magnetic fluctuations are excited. It follows from Eq.
versus the parameter compressibility for p=5/3 (Kolmogorov 2_ 12 _ 2_ _ )
turbulence and 8= 1. (290 that bi—Dbj,. o(q°—4)(q—1), where bj,

=b(o=0) is the value of the parametbrfor incompress-
ible fluid flow andb.=b(o>0) is the value of the param-

Ko 2\ Vio/3] eterb for compressible fluid flow. From this we see that for
T b I [2Mro/3]’ q>2 (i.e.,b?>0) we obtain G<bZ<b?.. The latter implies

that the compressibility impairs the generation of magnetic

andk=1,2,3,. . . . This analysis shows that the characteristic{luctuations forq>2.
scales of localization of the magnetic fluctuations is of order NOW we discuss the effect of the exponent of the energy
spectrum of the turbulent velocity field on the generation of

1 magnetic fluctuations. The solutid80) for the correlation
|f~IORm‘l’Z(p‘l)ex;{B(arctarS+ an+a/2)|, (32 functionW(r) is valid forb?>0 (i.e., forq>2). In this case
(g>2) magnetic fluctuations can be excited. Since
g=2p—1 the necessary condition for the excitation of mag-
wherens<k. netic fluctuations isp>3/2. On the other hand, when

the parameter compressibility for p=>5/3 (Kolmogorov

turbulencg and =1 is presented in Fig. 1. It is seen in Fig.
1 that the threshold for the generation of magnetic fluctua- W(r)=mYa =32 A,r P+ AgrP). (33
tions (i.e., the critical magnetic Reynolds numpéy turbu-
lent fluid flow with V-u=# 0 is higher than that for the case of
incompressible fluid. For incompressible fluid=0 the criti-  In this case magnetic fluctuations are not excited.
cal magnetic Reynolds number =412, while for com- Note that magnetic fluctuations in &correlated-in-time
pressible fluid flowo=0.1 the value R&"=740. For a incompressible turbulent fluid flow were studied[&8] for
larger parameter of compressibility the critical magneticPin<1. In the latter model the correlation time is assumed to
Reynolds number increases sharply. The latter implies thee independent of the scale of turbulent motions; therefore
the compressibility impairs the generation of magnetic fluc-d=p and the necessary condition for the excitation of mag-
tuations. netic fluctuations ip>2. The Kolmogorov turbulence with
Now we discuss the effect of compressibility on the gen-p=5/3 and for Pg<1 cannot generate magnetic fluctuations
eration of magnetic fluctuations. In compressible ideal conin the model with a scale-independent correlation time of the
ducting fluid flow the vectoH/p is frozen into the motion of  turbulent velocity field 18]. On the other hand, in the model
the fluid. In incompressible flow, at any time the mass of thewith a scale-dependent correlation time of the turbulent ve-
fluid flowing into a small volume exactly equals a mass out-locity field considered in the present study the magnetic fluc-
flow from this volume. On the other hand, in compressibletuations are excited fop>3/2.
flow (V-u#0) a mass of fluid flowing into a small volume Remarkably, a spectrum of magnetic fluctuations propor-
does not equal a mass outflow from the volume at any intional to k™2 (the Kraichnan spectruymoccur when the
stance. Therefore, at times smaller than a characteristic tim@agnetic energy equals the hydrodynamic enekgik)
of the turbulent velocity field the fluid density and the —=E(k)xk™*2 (see[31]). HereM (k) and E(k) are spectral
magnetic fieldH increase(or decreasewhenV-u<0 (or  functions of the magnetic and hydrodynamic energy, respec-
V-u>0). Note that the increase and decrease of the magdively. We have shown here that if the energy spectrum of
netic field in a small control volume are separated in timehydrodynamic turbulent motions is steeper than kie'?
and small molecular magnetic diffusion breaks a reversibilityspectrum, the magnetic fluctuations can be generated.
in time. The latter may cause an additional increés® Note that the condition of the validity of the assumption
caused by the compressibility of the fluid flow. of the very short correlated velocity field is as follows. The
On the other hand, the compressibility affects the turbucharacteristic time of variations of the magnetic fluctuations
lent magnetic diffusion as well since it increases the turbusg~ 7;1 is very large in comparison to the momentum re-
lent magnetic diffusion in small scales. Whgir2 the in-  laxation timer of the velocity field in the scalg . The scale
crease of the turbulent magnetic diffusion is stronger thar; determines the conditions of generation and localization of
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the magnetic fluctuations. This allows us to estimate the 1
maximum numbes of the high-order correlation function of M (K)o 152 ® G (36)

the magnetic field,
s< le’z/ In(%)
R Obukhov-Corrsin spectrum for the passive scétae, e.g.,
[39-41).

when the theory is valid. For the Kolmogorov turbulence Equation(36) yields the second moment of magnetic fluc-
(p=5/3) and Rnx 1P (e.g., the convection zone of the $un tuationsW(r)or4~2P«r3-9 whereq=2p— 1. Note that the
we obtains<10°. general solution of Eg(17) with an external sourcé in-
cludes the solution30) [or (33)] and the solutionW(r)
ocr42P (j.e., it includes solutions describing the anomalous
and normal scalings The obtained anomalous scaling
W(r)~r~(P+D/ZcospInr+¢y) can be presented as the real

The problems of anomalous scalings for vectorag-  part of the power-law function® with the complex exponent
netic and scalar(particles number density or temperajure {=—1/2—p—ib. This anomalous scaling is significantly
fields passively advected by a turbulent fluid flow have beewlifferent from the normal scalingV(r)er4=2° and corre-
a subject of active research in recent ye@se, e.g.[32—  sponds to the deviation from the conditig8b) of the con-
38]). The anomalous scaling means the deviation of the scabtant flux of magnetic fluctuations over the spectrum. The
ing exponents of the correlation function of a vecfscalaj ~ obtained anomalous scaling is valid when the exponent of
field from their values obtained by the dimensional analysisthe energy spectrum of the turbulent velocity field is
For incompressible turbulent flow the anomalous scalings foB/2<p<3. When < p<3/2 the anomalous exponent in a
the scalar field can occur only for a fourth-order correlationlow-Mach-number compressible turbulent flow is real, i.e.,
function (see, e.g.[33—35), while for the vectomagneti¢ ~ {=—1/2—p+|b(a,q)|. In the case of incompressible turbu-
field the anomalous scalings appear already in the secordnt flow (o=0) this result coincides with that obtained in
moment[37]. [37].

The anomalous scalings of the magnetic fluctuations were
considered in [37] wusing the model of the
S-correlated-in-time turbulent velocity field. The correlation

time in this model is independent of the scale of turbulent In this Study we have shown that the magnetic fluctua-
motions. Note that in this model the generation of magnetigions can be generated for small magnetic Prandtl numbers,
fluctuations is possible only fog=p>2. Taking into ac- which occur in many astrophysical and geophysical applica-
count the dependence of the correlation time on the scale @fons. We have studied the effect of compressibility of the
turbulent motions, we have showiee Sec. Il that the  |ow-Mach-number turbulent fluid flow. The compressibility
magnetic fluctuations can be generated for<3f2<3. impairs the generation of magnetic fluctuatiofi®., the
Now we discuss the anomalous scaling for the model withthreshold for the generation of magnetic fluctuations by tur-
the scale-dependent correlation time of turbulent motionspylent fluid flow with diu# 0 is higher than that for the case
Consider the case when the magnetic Reynolds numbejt divergence-free fluid flow The reason is that the com-
Rm<Rm®) and the magnetic fluctuations are caused by amyressibility results in an increase of the scale of localization
external source. The condition RoRm(® implies that there  of the magnetic fluctuations. In larger scales the scale-
is no self-excitation(i.e., exponential growthof the mag-  dependent turbulent magnetic diffusion is larger. However,
netic fluctuationgsee Sec. l)l. The solution for the correla- the contribution of the compressibility to the generation of
tion function W(r) in the inertial range is given by the magnetic fluctuations proportional t¥ {u)? is smaller
W(r)~r~ P Dl2cospinr+¢y) [see EqQ.(30)]. This corre- in the larger scales. This results in an increase of the thresh-
sponds to the anomalous scaling of the magnetic fluctuationsld for the generation of magnetic fluctuations in a com-
The normal scaling for the second moment of the magnetipressible fluid flow.
fluctuations is given byW(r)~r4=2P. The normal scaling The model of very short scale-dependent correlation time
for the second moment of magnetic fluctuations occurs wheof the turbulent velocity field is considered. It is shown that
the flux of magnetic fluctuations over the spectrum is conthe magnetic fluctuations can be generated even in the Kol-

112 When p=5/3 the spectrum of magnetic fluctuatiohs(k)
34) o<k 53 Note that the spectrun{36) is similar to the
: (39

IV. ANOMALOUS SCALING
OF MAGNETIC FLUCTUATIONS

V. DISCUSSION

stant, i.e., mogorov turbulencéi.e., for p=5/3). The anomalous scal-
ing for the second moment of the magnetic field is found for
(B?) the case 3/2 p<3. This anomalous scaling has the com-
% = const, (35  plex exponent{=—1/2—p—ib. When 1<p<3/2 the

anomalous exponent in a low-Mach-number compressible
turbulent flow is real= —1/2— p+|b(o,q)|. In the case of
where(B?),= [ M (k)dk, M(K) is the spectrum function of incompressible turbulent flowo(=0) this result coincides
magnetic fluctuations,a-,?(k)z(nkkz)*l, and 7=(7u%),  with that obtained inf37]. The equation for the high-order

= [¢n(k)dk. Dimensional analysis shows that under condi-correlation functions of the magnetic field is derived. It is
tion (35) the spectrum of magnetic fluctuatiofer vector  shown that the growth rates of the higher moments of the
field) is given by magnetic field are higher than those of the lower moments,
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i.e., the spatial distribution of the magnetic field is intermit- of substitutiong—t+ At andty—t in Eq. (2). The result is
tent. given by
The presented analysis explains why in the numerical
simulations by{20,21] the magnetic fluctuations with a zero Hi(t+At,x)=M{Gj;(t+ At t)H;[t,&(t+ At,t) ]},
mean magnetic field were not generated. The parameters in (A1)
the numerical simulation[21] with a zero mean field
(B=0) are Rm=200 ando=0.01. We have shown that where
even for incompressible turbulent fluid flonoE0) the At
threshold of the excitation of the magnetic fluctuations e Y
Rm(®=412 in the case of Re<1. Thus the magnetic fluc- S+ ALD=Ea=x fo Wity £o)do+2nW(AD),
tuations cannot be generated for the parameters ud&ijin (A2)
Note that the value Rff’=412 also cannot be achieved in
laboratory experiments. On the other hand, in astrophysicdl,=t+At—o, andg(tz,tl)zgtz_tl, ie., &,=&(t+Att,).
conditions RneRm(®) and Pf,<1; therefore the magnetic  |n order to find the functioi®;; (t+ At,t) we solve Eq(3)
fluctuations can be generated in the astrophysical conditiongy iterations. The result is given by
This is in agreement with observations of the magnetic fields
in the Sun(see, e.g.[21]). At
Note that the use of thé-correlated-in-time random pro- ~ Gij(t+At, )= 6+ fo Nij(t;.&,)do
cess to describe a turbulent velocity field is certainly an ap-
proximation. However, we study in the present paper two At s
specific problems(a) conditions for the excitations of the + fo Nik(tsvgs)dsfoNkj(ta:ga)do'y
magnetic fluctuationgi.e., the threshold of the generation
and growth rate of the magnetic fluctuations in the vicinity of (A3)
the thresholgland(b) the anomalous scaling behavior, which
is determined by the “zero mode” of the equations for high- Where we keep terms greater than or equalO{At)?).
order correlation functions of the magnetic fieltizero ~ Expanding the functiorH;(t,£,,) in a Taylor series in the
mode” is a mode with zero growth rate vicinity of the pointx yields
In the vicinity of the threshold the characteristic time of H 2
variations of the high-order correlation functions of the mag- JH; J°H;
netic field is much larger than the momentum relaxation time Hi(t a0 =Hi(t.x) + ﬁ(gm_x)”& 2 IXmdX,,
7(r). The latter allows us to use thé&-correlated-in-time
random process to describe a turbulent velocity field. X(Eat=X)m(Eat—=X)nt -+ - (A4)
Note that the problem of the generation and dynamics of ) _ _ _
the magnetic fluctuations in the turbulent velocity field with Using the equation for the Wiener trajectd#?2) we obtain
a finite correlation time is very important and is a subject for -
future investigations. A significant difference between the _ N _
results obtained with a very short correlation time and those[g(tz’tl) Xlm j Un(ts E)dSH V2wn(tz—ty),
obtained with a Navier-Stokes turbulent velocity field prob- (A5)
ably will be observed in the case of a strong deviation from
the threshold of excitation of the magnetic fluctuations. Inwhere&(t,,t,—s)=§&. Expanding the velocity ,,(ts, &) in
this case the problem will be strongly nonlinear and may bea Taylor series in the vicinity of the point and using Eq.
solved only numericallyif large magnetic Reynolds num- (A5) yields
bers will be achieved in numerical simulations with small
magnetic Prandtl numbers

dv Jv
Ut €9 =vm(ts, X) v Ss 275 Swa(s) + -

(AB)
ACKNOWLEDGMENTS
We have benefited from stimulating discussions with A, €re we assume that velociyremains constaritime inde-

Brandenburg, T. Elperin, A. Pouquet, and K.-H.dRa. pendent at small time intervals (@t),(At,2At), ... and
’ ' ’ changes every small tim&t and that the velocity is statisti-

cally independent at different time intervals. Substituting Eq.
APPENDIX: DERIVATION OF THE EQUATIONS (A6) into Eq. (A5) and czalculating the integrals in EGA5)
FOR THE MEAN MAGNETIC FIELD accurate up to-(t;—t;)” terms yields
AND FOR THE HIGH-ORDER CORRELATION
FUNCTION OF THE MAGNETIC FIELD Jom

1
[&(ta,t) —X]m=—(ta—t)vnt E(tz_tl)zvl X

We derive here the equation for the mean magnetic field

and second moment of the magnetic field. We use here the M [t~ t
stochastic calculugl5-17,22—2% - Zn_ax, . wids+ V2 pWy(t,—ty)

If the total field H; is specified at time, then we can
determine the total fieltH;(t+ At) at timet+ At by means +-e (A7)
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The combination of EqS(A7) and (A4) yields the formula

for the fieldH;(t,&x,),

dunm

1
— U At+ Evlﬂ_)q

- oM,
Hi(tvat)_Hi(th)"’W

m

ovy (At
+ anm—\/ZnﬁJ'o w|ds)

1 &°H;
+ i
2 IXmdX

(om0 (A2 +2pWw,

— \/ZyAt(vmW| +u W1},

where we keep terms greater than or equalOtAt)?).
Similar calculations for N;;(t,£,,), accurate up

~O(Ab), yield

N;j (t, Ea0) = N (1,x) + —0)(” (—vmAt+V29wy)
m

. 2\
WW -
7 gXdxg
Therefore,
fSN t,,&,)do=N; (t L. MNi g
. ij(te,&o)do=N;;(t,x)s 5Vq anS

N F d
+ wawdo+ - - -,
7 oxmix, Jo M

where we also keep terms greater than or equal t

(At)?

The substitution of EQgA12) and(A8) into Eq.(Al) allows
us to determingd;(t+ At,x),

Hi(t+At,x)=H;(t,x)+ M| gi(x)At+ p;(x)(At)?

At
+\27Qu(x | wnda), (AL3)
where
CH Dy M Tyt
qi= mm Uma i nWmWn&Xmé?Xn( )T,

_1H d nm v d b
Pi=3 n ax Vi ax,  Umax. ‘9_)(n( vi)
t5 L (o |+ D0l 5y,
inx (Pvm) |+ Zo—| BUmdin=vm
1 &vm5 +1 9%H;
2V g%, | T 2V mUn Gy ax,
(9N|J ﬂH, ﬁl}m
Qw=Hj———————

Averaging Eq.(A13) over the ensembles of the turbulent
velocities, we obtain the equation for the mean field
B(t+At,x)=(H(t+At,x)). Calculating the limit [B(t
+At,x)—B(t,x)]/At for At—0 yields Eq.(6) for the mean
magnetic field. Now we calculate the correlation function
hij=(hi(t+At,x)h;(t+At,y)) by means of Eq.(A13),
where the turbulent component of the magnetic field

(t,x)=H(t,x)—B(t,x). Now we determine [hi;(t

O((At)%). Using Egs.(A10) and (A9), we calculate the +At,x) —h;;(t,x)]/At for At—0. The result is given by Eq.

function G;;(t+ At,t) accurate up to- (At)? terms,

1 0N
Gij(t‘f'At,t):(Sij+Nij(t,X)At+— +Nikaj

—Ug
q
2 IXq

X(At)2+ 2 aN“fm do+
) W (T RN
nan 0 q

Using the identity

_&Ui Jvy (72l)k

= — 4+ UI s
(9Xk (9XJ (9Xk(9Xj

J Juyg
&Xk vi &X]

Eqg. (A11) can be written as

G”(t‘f‘At,t):él] + Nij(t,X)At"r‘ M”(At)z

+2 ‘QN”fm do+ A12
ﬂﬂ—xq o Wadot o, (A12)
where
v _15 d o d . d [ dvyg
ij_2 i an( Uk) &XJ( Ui) (9Xk Uian Uk&Xj

(12). We seek a solution for the second moment of the mag-
netic field in the form given by Eq(16). Multiplying Eq.
(12) by rir; /r? and using the identities

3¢ 7h W' (F+F +rF))
- — r
r2 Mo drn ¢ c

!

4
+——(F+Fo+rF'/2), (Al4)

rirj afml ﬂhis 3 2 F(’: !

SIS Wl ZE + Ty _c

3 G W SR 2Rk A
rirj &fm| (?h” B , . 4Fé
Tz—&—rlo_'Tm—rW Fc+ r s (A16)
—z—r‘rj—azf” hyj=W(rF 7 +5F A17
r2 arear, 9 (rFe c): (A7)

rir]‘ (92fp|
3t = P —W(rE!+7F.+8F./r),  (A18)

re grpdry



rirj &Zfij

_ m+ H+
T—&rmél’nhmn W(rF¢ +5F;

F"+4F'[r)
+W' (rE!+2F"), (A19)

we obtain Eq.(17) for the correlation functioW(t,r).

Now we derive the equation for the high-order correlation

function @ (t+At,x1%) =(IT5_1h, (t+AtxD))  using
Eq. (A13):

S
{aj}_ (M)
DL <J]'[1 h, (t,x )>

> <Atq < 11 hak<t,x<k>>>
=1 =1k
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+El<<At>p ) H o (txk>>>
=
+ 1<<At> G, (X)), (X)
=
x I h (t,x<“>)>] (A20)
n=1;n#j,k
where{aj}=ay,a;, ... as andx“}—(x(l)x(z’. X))

Now we changd_,k—>L and qukp—>M I“q in Egs. (13
and (14). Use Eq. (A20) we find [<I>{"J}(t+At xiih

—@i“l}(t,x{l})]/m for At—0. The result is given by Eq.
(19).
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