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Intermittency and anomalous scaling for magnetic fluctuations
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The generation of magnetic fluctuations by turbulent flow of conducting fluid with a zero mean magnetic
field for small magnetic Prandtl numbers is studied. The equation for the high-order correlation functions of the
magnetic field is derived. It is shown that the growth rates of the higher moments of the magnetic field are
larger than those of the lower moments, i.e., the spatial distribution of the magnetic field is intermittent. The
problem of anomalous scaling of magnetic fluctuations is discussed as well. The turbulent fluid velocity field
is assumed to be homogeneous and isotropic with a power-law energy spectrum~proportional tok2p) and with
a very short scale-dependent correlation time. It is found that magnetic fluctuations can be generated when the
exponentp.3/2. In addition, the effect of compressibility~i.e.,¹•uÞ0) of the low-Mach-number turbulent
fluid flow u is studied. It is shown that the threshold for the generation of magnetic fluctuations by turbulent
fluid flow with ¹•uÞ0 is higher than that for incompressible fluid. This implies that the compressibility
impairs the generation of magnetic fluctuations.@S1063-651X~97!07406-0#

PACS number~s!: 47.65.1a, 47.27.Eq
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I. INTRODUCTION

The problem of the generation of magnetic fluctuations
turbulent flow of conducting fluid is of fundamental impo
tance in view of various applications in astrophysical a
laboratory plasmas~see, e.g.,@1–11#!. Analytical and nu-
merical studies of intermittency and the generation of m
netic fluctuations by homogeneous, isotropic, and inco
pressible turbulence with a zero mean magnetic field w
carried out mainly for magnetic Prandtl numbers Prm>1
~see, e.g.,@12–17#!. The study of magnetic fluctuations wit
Prm!1 shows that magnetic fluctuations cannot be gener
by turbulent fluid flow with the Kolmogorov energy spe
trum @18,19#. In addition, in numerical simulations b
@20,21# the generation of magnetic fluctuations for Prm!1
were not observed.

However, in astrophysical plasmas the magnetic Pra
numbers is small (Prm!1). Thus a mechanism for the gen
eration of magnetic fluctuations for Prm!1 still remains
poorly understood. On the other hand, in astrophysical ap
cations ~e.g., accretion disks, solar and stellar convect
zones, and galaxies! the turbulent velocity field cannot b
considered as divergence-free.

In the present paper we study the generation of magn
fluctuations with a zero mean magnetic field for Prm!1. The
turbulent fluid velocity field is assumed to be homogene
and isotropic with a very short scale-dependent correla
time. We have found that magnetic fluctuations can be g
erated by turbulent motions of conducting fluid flow ev
with the Kolmogorov energy spectrum Prm!1. The equation
for the high-order correlation functions of the magnetic fie
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is derived. It is shown that the spatial distribution of th
magnetic field is intermittent. In addition, we study the effe
of compressibility~i.e., ¹•uÞ0) of the low-Mach-number
turbulent fluid flowu on the generation of magnetic fluctua
tions.

II. GOVERNING EQUATIONS

In this section we describe dynamics of magnetic fluct
tions. The induction equation in a compressible~i.e., ¹•v
Þ0) fluid flow reads

]H

]t
1~v•¹!H5~H•¹!v2H~¹•v!1hDH, ~1!

whereh5c2/4ps is the magnetic diffusion,s is the electri-
cal conductivity, andc is the speed of light. We derive equa
tions for the mean field and for the high-order correlati
functions of the magnetic field. To this purpose we use
stochastic calculus that was applied in magnetohydrodyn
ics @15–17# and passive scalar transport in incompressi
@15,16,22# and compressible@23–25# turbulent flows. Mag-
netic diffusion in this method is described by means of
average over an ensemble of random Wiener trajector
The solution of the induction equation~1! with the initial
condition H(t5t0 ,x)5H0(x) is given by a modified
Feynman-Kac formula@15,16#

Hi~ t,x!5M $Gi j ~ t,t0!H0 j@j~ t,t0!#%, ~2!

where the functionGi j is determined by the equation

d

ds
Gi j ~ ts ,t0!5NikGk j , ~3!he
417 © 1997 The American Physical Society
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418 56I. ROGACHEVSKII AND N. KLEEORIN
with the initial conditionGi j5d i j for ts5t0 . HereM $ % is a
mathematical expectation over the ensemble of Wiener p
ts5t1s,

Nik5
]v i
]xk

2d ik¹•v, ~4!

and the Wiener pathjt[j(t,t0) is given by

jt5x2E
t0

t

v~ ts ,js!ds1A2hw~ t !, ~5!

wherewt is a Wiener process. Equation~5! describes a set o
the random trajectories that pass through the pointx at time
t. The use of this technique of path integrals allows us
derive the equation for the mean magnetic fieldB5^H&,

]B

]t
5¹3~Veff3B!1“ i~h im“mB1Bi“k^tuku&

22Bk^tui“ku&! ~6!

~see details in the Appendix!, where

hpm5hdpm1^tupum&, ~7!

Veff5V2^tu~“•u!&, ~8!

t is the scale-dependent momentum relaxation tim
V5^v& is the mean velocity field, and the angular brack
mean statistical averaging. We introduce a tensoramn and a
vectorq,

amn5~«mji^tui¹nuj&1«n ji^tui¹muj&!/2, ~9!

qm5^tum~¹•u!&2¹nhnm /2, ~10!

which satisfy the identity

^tui¹nuk&5~« ikmamn1dknqi2d inqk1¹nhki!/2,

where dmn is the Kronecker tensor and« ikm is the Levi-
Civita tensor. The tensoramn describes thea effect. In iso-
tropic turbulencê uiuj&5^u2&d i j /3 and Eq.~9! reduces to
the well-known formula for thea effect ~see, e.g.,@1–4#!,
a i j52^tu(¹3u)&d i j /3. Equation~10! for the vectorq in
the case of incompressible isotropic turbulence coinci
with the well-known formula for the velocity that describe
turbulent diamagnetism~see, e.g.,@26,4#!. Using Eqs.~9! and
~10!, we rewrite Eq.~6! for the mean magnetic field as

]B

]t
5¹3~Ueff3B1âB2ĥ¹3B!, ~11!

where ĥ5(hppd i j2h i j )/2 , â5a i j , and
Ueff5V2¹p^tupu&/2. Equation~11! is the induction equa-
tion for the mean magnetic field in a low-Mach-number co
pressible turbulent fluid flow. This equation coincides
form with that for incompressible turbulent fluid flow~see,
e.g., @1–4#!. Therefore, compressibility does not change
form of the induction equation for the mean magnetic fie
This fact demonstrates a difference between the problem
evolution of the scalar field~the number density of particles!
hs

o

,
s

s

-

e
.
of

and vector~magnetic! field advected by a low-Mach-numbe
compressible turbulent fluid flow. In particular, the com
pressibility results in the appearance of a new term in
equation for the mean number density of particles. The n
term describes an additional nondiffusive turbulent flux
particles due to compressibility (¹•uÞ0) of fluid @23,24#.
This causes the formation of the large-scale inhomogene
spatial distributions of the mean number density of particl

The technique of path integrals allows us also to der
the equation for the second-order correlation funct
hi j5^hi(t,x)hj (t,y)&:

]hi j
]t

5@ L̂ ik~x!d js1L̂s j~y!d ik1M̂ i jks#hks1I i j ~12!

~for details see the Appendix!, where the turbulent compo
nent of the magnetic field ish(t,x)5H(t,x)2B(t,x) and

L̂ i j5« iks
]

]xk
F«sm jUm1as j2ĥsm«mp j

]

«xp
G , ~13!

1

2
M̂ i jks5d ikd jsf mn

]2

]xm]yn
2d ik

] f m j

]ys

]

]xm
2d js

] f in
]xk

]

]yn

1
]2f i j

]xk]ys
1d ikd js

] f mp

]yp

]

]xm
1d ikd js

] f pn
]xp

]

]yn

2d ik
]2f p j

]xp]ys
2d js

]2f ip
]xk]yp

1d ikd js

]2f pl
]xp]yl

, ~14!

I i j5M̂ i jksBk~x!Bs~y!, ~15!

f mn5^tum(x)un(y)&, andUm5(Ueff)m . We seek a solution
for the second moment of the magnetic field in the form

^hm~x!hn~x1r !&5W~r !dmn1
rW8

2 S dmn2
rmr n
r 2 D . ~16!

This form of the second moment corresponds to the con
tion ¹•h50 and an assumption of the homogeneous a
isotropic magnetic fluctuations. Multiplying Eq.~12! by
r i r j /r

2 and using the identities~A14!–~A19! ~see the Ap-
pendix! yields the equation for the correlation functio
W(r ,t)5^ht(x,t)ht(y,t)&:

]W

]t
5

1

m
W91mW82

k

m
W, ~17!

where ht is the projection of the magnetic fieldh on the
direction r5x2y and

1

m
5

2

Rm
1
2

3
@12F2~rF c!8#,

m5
4

mr
1S 1mD 8

, k5
2m

r
~ f 812 f c8!,

f5F1rF 8/3, f c5Fc1rF c8/3,

Rm5u0l 0 /h@1 is the magnetic Reynolds number,u0 is the
characteristic velocity in the maximum scalel 0 of turbulent
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56 419INTERMITTENCY AND ANOMALOUS SCALING FOR . . .
motions, andF85dF/dr. Here we consider a homogeneou
isotropic, and reflectionally invariant~with zero mean helic-
ity! compressible turbulent fluid velocity field. In this ca
the correlation function̂tumun& is given by

^tum~x!un~x1r !&5hTF @F~r !1Fc~r !#dmn

1
rF 8

2 S dmn2
rmr n
r 2 D1rF c8

rmr n
r 2 G

~18!

~for details see@23#!, whereF85dF/dr, hT5u0
2t0 /3 is

the turbulent magnetic diffusion,t05 l 0 /u0, and F(0)
512Fc(0). ThefunctionFc(r ) describes the compressib
~potential! component, whereasF(r ) corresponds to the vor
tical part of the turbulence. Equation~17! is written in di-
mensionless variables: Coordinates and time are measur
the units l 0 and t0 , the velocity is measured in the uni
u0 , and the magnetic field is measured in the unitsB0 . By
means of Eq.~17! we will study the generation of magnet
fluctuations~see Sec. III!.

The technique of path integrals that is described in
Appendix also allows us to derive the equation for the hig
order correlation functionFs

$a j %(t,x$ j %)5^) j51
s ha j

(t,x( j ))&:

]Fs
$a j %

]t
1(

j51

s

L̂ak

a j )
p,q51;p5” j

s

dap

aqFs
$ap%

5(
j51

s

(
i51

s21

M̂akap

a jaq )
m,n51;n5” j ,q

s

dan

amFs
$ap% , ~19!

where $a j%5a1a2 , . . . ,as , x
$ j %5(x(1),x(2), . . . ,x(s)), and

in Eqs. ~13! and ~14! we change L̂ ik→L̂ak

a i and

M̂ jqkp→M̂akap

a jaq . Now we consider the case of a zero me

magnetic fieldB50. When the mean fieldBÞ0 a source
I $a j % ~which depends onB and on the structure functions o
the lower orders! appears in Eq.~19!. We seek a solution to
Eq. ~19! in the form

Fs
$a j %5)

i ,k

s

F2
a jak~x~ i !2x~k!!exp~gst !, ~20!

whereiÞ j . Substitution of Eq.~20! into Eq. ~19! yields

gs5
s~s21!

2
g2 . ~21!

Equation ~21! implies that if the second-order correlatio
function of the magnetic field grows (g2.0), then all high-
order correlation functions grow. It is shown in Sec. III th
under certain conditionsg2.0. Note that the higher mo
ments grow faster than the lower moments of the magn
field. Therefore, the spatial distribution of the magnetic flu
tuations is intermittent~i.e., gs.sg2 /2). This is in agree-
ment with a dynamo theorem@27,15,16#.

We use in the present paper thed-correlated-in-time ran-
dom process to describe a turbulent velocity field:
,

in

e
-

ic
-

^um~ t,x!un~ t8,x1r !&5dS t2t8

2t~r ! D ^um~x!un~x1r !&, ~22!

where t(r ) is the scale-dependent momentum relaxat
time. It follows from Eq.~22! that

E
0

`

^um~ t,x!un~ t8,x1r !&dt85^tum~x!un~x1r !&.

Using thed-correlated-in-time random process allows us
provide the analytical calculations and to obtain closed
sults for the growth rate of the high-order correlation fun
tions of the magnetic field, the threshold of the generation
the magnetic fluctuations, and their anomalous scaling.
results remain valid also for the velocity field with a fini
correlation time if the high-order correlation functions of th
magnetic field vary slowly in comparison to the correlati
time of the turbulent velocity field~see, e.g.,@28,15,16#!. We
also take into account the dependence of the momentum
laxation time on the scale of the turbulent velocity fiel
t(k)5t0(k/k0)

12p, wherep is the exponent in the spectrum
of kinetic turbulent energy,k is the wave number, and
k05 l 0

21 . The equations derived for the high-order corre
tion functions are valid as long as the momentum relaxat
time of the velocity field is small in comparison to the cha
acteristic time of variations of the magnetic fluctuations.

III. GROWTH OF MAGNETIC FLUCTUATIONS

Let us study the evolution of magnetic fluctuations in
low-Mach-number compressible turbulent fluid flow.
mechanism of the generation of magnetic fluctuations wit
zero mean magnetic field was proposed by Zeldovich
co-workers ~see, e.g.,@16,29#! and comprises stretching
twisting, and folding of the original loop of a magnetic fiel
These nontrivial motions are three dimensional and resu
an amplification of the magnetic field. The magnetic diff
sion leads to the reconnection of the field at anX point.

The generation of magnetic fluctuations can be descri
by Eq.~17! for the second moment of the magnetic field. W
seek a solution of Eq.~17! in the form

W~ t,r !5
C~r !Am

r 2
exp~gt !, ~23!

where the unknown functionC(r ) is determined by

1

m~r !

d2C

dr2
2@g1U~r !#C50 ~24!

and

U~r !5
1

4m~r !
~x212x814k!, x~r !5

4

r
1mS 1mD 8

.

We consider the case of small magnetic Prandtl numb
Prm5n/h!1, which is typical for many astrophysical an
geophysical applications, wheren is the kinematic viscosity.
The latter allows us to consider magnetic fluctuations only
the inertial range of the turbulent velocity field. We choo
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420 56I. ROGACHEVSKII AND N. KLEEORIN
the following model of turbulence. IncompressibleF(r ) and
compressibleFc(r ) components in the inertial range of tu
bulencer!1 are given by

F~r !5~12«!~12r q21!, Fc~r !5«~12br q21!,

wherer d,r!1, q is the exponent in the spectrum of th
function ^tumun&, r d5Re21/(32p), p is the exponent in
the spectrum of kinetic turbulent energy, an
Re5u0l 0 /n@1 is the Reynolds number. Thus the functio
m(r ), x(r ), andk(r ) for r!1 are given by

1

m~r !
5

2

Rm
@11bmRmr

q21#, k~r !522mk0r
q23,

~25!

x~r !5
4

r S 11
~q21!/4

11~r q21bmRm!21D , ~26!

where

bm5
1

3
~12«!~11qs!, s5

«b

12«
,

k05
1

3
~12«!~112s!~21q!~q21!.

Note that the exponentp in the spectrum of kinetic tur-
bulent energy differs from that of the function^tumun& due
to the scale dependence of the momentum relaxation
t of the turbulent velocity fieldu. The relation betweenp
andq can be found as follows. The spectrum function of t
turbulent magnetic diffusion is defined as

h~k!5t~k!E~k!, ~27!

where k is the wave number,E(k)}k2p is the spectrum
function of the turbulent velocity fieldu, t(k) is the scale-
dependent momentum relaxation time, and̂u2&
5*0

`E(k)dk. Consider a Kolmogorov-type turbulence. F
this turbulence the energy flux over the spectrum is const
i.e.,

E~k!k

t~k!
5const. ~28!

Equations~27! and~28! yield h(k)}E2(k)k}k122p. For ho-
mogeneous and isotropic fields the scale-dependent turb
magnetic diffusion is given by

h~r ![^tu~x!•u~x1r !&5E
0

`sin~kr !

kr
h~k!dk.

Thus we obtain thatq52p21. Note that ifp.3/2, the ex-
ponentq.2. We will see in this section that the magne
fluctuations can be generated ifq.2.

The solution of Eq. ~24! can be obtained using a
asymptotic analysis~see, e.g.,@15,17,23,25#!. This analysis is
based on the separation of scales. In particular, the solu
of the Schro¨dinger equation~24! with a variable mass ha
different regions where the forms of the potentialU(r ),
massm(r ), and therefore eigenfunctionsC(r ) are different.
e

t,

nt

on

Solutions in these different regions can be matched at t
boundaries. Note that the most important part of the solut
is localized in small scales~i.e., r!1). The results obtained
by this asymptotic analysis are presented below. The solu
of the Schro¨dinger equation~24! has the discrete@for
U(r ),0# and continuous@for U(r ).0# spectra. The dis-
crete spectrum describes the self-excitation of magnetic fl
tuations (g2.0), while the continuous spectrum corre
sponds to the dissipation of magnetic energy (g2,0). The
solution of Eq.~24! has three characteristic regions.

In region I, i.e., for 0<r<Rm21/(q21), the massm(r ),
the potentialU(r ), and the functionW(r ) are given by

1

m~r !
;

2

Rm
@11bmRmr

q21#,

U~r !;
1

mS 2r 2 2k0Rmr
q23D ,

W~r !5A1m
1/2r23/2Jl@2lAk0Rmr

3/2l/3#,

where l53/(q21), Jl is the Bessel function of the firs
kind, and the coefficientA1 is given by

A15A 2

Rm
GS q12

q21D S 3

lAk0Rm
D l

.

The correlation functionW(r ) for r!Rm21/(q21) is given by
W(r )512b0Rmr

q21, whereb05bm1k0(q21)/(q12).
In region II, i.e., for Rm21/(q21)!r!1,

1

m~r !
;2bmr

q21@11~bmRmr
q21!21#,

U~r !;2
114b2

4mr2
, b25S q224

4 D S 31s~42q!

11qs D , ~29!

W~r !5A2m
1/2r23/2cos~blnr1w0!. ~30!

In region III (r@1),

1

m~r !
;2/3, U~r !;4/3r 2,

W~r !5A3r
22~Augu1r21!exp~2Augur !.

Matching functionsW(r ) andW8(r ) at the boundaries o
these regions yields the constantAk , w0, and the growth~or
damping! rateg2[g of the magnetic fluctuations. The latte
is given by

g.
4b21~42q!2

4~q21!
lnS Rm

Rm~cr!D ,
where the critical magnetic Reynolds number Rm(cr) is given
by

Rm~cr!.expFq21

b S pk1arctan
42q

2b
1arctanSD G , ~31!
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S5
Ak0

b

Jl8@2lAk0/3#

Jl@2lAk0/3#
,

andk51,2,3,. . . . This analysis shows that the characteris
scales of localization of the magnetic fluctuations is of or

l f; l 0Rm
21/2~p21!expF1b ~arctanS1pn1p/2!G , ~32!

wheren<k.
The critical magnetic Reynolds number as a function

the parameter compressibilitys for p55/3 ~Kolmogorov
turbulence! andb51 is presented in Fig. 1. It is seen in Fi
1 that the threshold for the generation of magnetic fluct
tions ~i.e., the critical magnetic Reynolds number! by turbu-
lent fluid flow with¹•uÞ0 is higher than that for the case o
incompressible fluid. For incompressible fluids50 the criti-
cal magnetic Reynolds number Rm(cr)5412, while for com-
pressible fluid flows50.1 the value Rm(cr)5740. For a
larger parameter of compressibility the critical magne
Reynolds number increases sharply. The latter implies
the compressibility impairs the generation of magnetic fl
tuations.

Now we discuss the effect of compressibility on the ge
eration of magnetic fluctuations. In compressible ideal c
ducting fluid flow the vectorH/r is frozen into the motion of
the fluid. In incompressible flow, at any time the mass of
fluid flowing into a small volume exactly equals a mass o
flow from this volume. On the other hand, in compressi
flow (¹•uÞ0) a mass of fluid flowing into a small volum
does not equal a mass outflow from the volume at any
stance. Therefore, at times smaller than a characteristic
of the turbulent velocity field the fluid densityr and the
magnetic fieldH increase~or decrease! when ¹•u,0 ~or
¹•u.0). Note that the increase and decrease of the m
netic field in a small control volume are separated in ti
and small molecular magnetic diffusion breaks a reversibi
in time. The latter may cause an additional increase^h2&
caused by the compressibility of the fluid flow.

On the other hand, the compressibility affects the tur
lent magnetic diffusion as well since it increases the tur
lent magnetic diffusion in small scales. Whenq.2 the in-
crease of the turbulent magnetic diffusion is stronger th

FIG. 1. Dependence of the critical magnetic Reynolds num
versus the parameter compressibilitys for p55/3 ~Kolmogorov
turbulence! andb51.
r

f

-

at
-

-
-

e
-

-
e

g-
e
y

-
-

n

that the increase of the growth of the magnetic fluctuatio
due to the compressibility of the fluid flow~see below!. Note
also that the scale of the localization of the magnetic fl
tuations increases when the degree of the compressibilits
increases@see Eq. ~32!#. On the other hand, the scale
dependent turbulent magnetic diffusion increases with
increase of scale. Thus the compressibility impairs the g
eration of magnetic fluctuations forq.2 ~see below!.

The generation of magnetic fluctuations depends on
form of solution for the correlation functionW(r ) in the
second region Rm21/(q21)!r!1 ~i.e., in the inertial range of
the turbulence!. The form of the solution depends on th
value m(r )U(r )}2(b211/4) ~see, e.g., @30#!. When
b2.0 magnetic fluctuations are excited. It follows from E
~29! that bc

22binc
2 52s(q224)(q21), where binc

5b(s50) is the value of the parameterb for incompress-
ible fluid flow andbc5b(s.0) is the value of the param
eterb for compressible fluid flow. From this we see that f
q.2 ~i.e.,b2.0) we obtain 0,bc

2,binc
2 . The latter implies

that the compressibility impairs the generation of magne
fluctuations forq.2.

Now we discuss the effect of the exponent of the ene
spectrum of the turbulent velocity field on the generation
magnetic fluctuations. The solution~30! for the correlation
functionW(r ) is valid forb2.0 ~i.e., forq.2). In this case
(q.2) magnetic fluctuations can be excited. Sin
q52p21 the necessary condition for the excitation of ma
netic fluctuations isp.3/2. On the other hand, whe
p,3/2 ~i.e., for q,2) the solution forW(r ) is given by

W~r !5m1/2r23/2~A2r
2b1A5r

b!. ~33!

In this case magnetic fluctuations are not excited.
Note that magnetic fluctuations in ad-correlated-in-time

incompressible turbulent fluid flow were studied in@18# for
Prm!1. In the latter model the correlation time is assumed
be independent of the scale of turbulent motions; theref
q5p and the necessary condition for the excitation of ma
netic fluctuations isp.2. The Kolmogorov turbulence with
p55/3 and for Prm!1 cannot generate magnetic fluctuatio
in the model with a scale-independent correlation time of
turbulent velocity field@18#. On the other hand, in the mode
with a scale-dependent correlation time of the turbulent
locity field considered in the present study the magnetic fl
tuations are excited forp.3/2.

Remarkably, a spectrum of magnetic fluctuations prop
tional to k23/2 ~the Kraichnan spectrum! occur when the
magnetic energy equals the hydrodynamic energyM (k)
5E(k)}k23/2 ~see@31#!. HereM (k) andE(k) are spectral
functions of the magnetic and hydrodynamic energy, resp
tively. We have shown here that if the energy spectrum
hydrodynamic turbulent motions is steeper than thek23/2

spectrum, the magnetic fluctuations can be generated.
Note that the condition of the validity of the assumptio

of the very short correlated velocity field is as follows. Th
characteristic time of variations of the magnetic fluctuatio
tB;gs

21 is very large in comparison to the momentum r
laxation timet of the velocity field in the scalel f . The scale
l f determines the conditions of generation and localization

r
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the magnetic fluctuations. This allows us to estimate
maximum numbers of the high-order correlation function o
the magnetic field,

s,Rm1/2Y U lnS Rm

Rm~cr!D U1/2, ~34!

when the theory is valid. For the Kolmogorov turbulen
(p55/3) and Rm5106 ~e.g., the convection zone of the su!
we obtains,103.

IV. ANOMALOUS SCALING
OF MAGNETIC FLUCTUATIONS

The problems of anomalous scalings for vector~mag-
netic! and scalar~particles number density or temperatur!
fields passively advected by a turbulent fluid flow have be
a subject of active research in recent years~see, e.g.,@32–
38#!. The anomalous scaling means the deviation of the s
ing exponents of the correlation function of a vector~scalar!
field from their values obtained by the dimensional analy
For incompressible turbulent flow the anomalous scalings
the scalar field can occur only for a fourth-order correlat
function ~see, e.g.,@33–35#!, while for the vector~magnetic!
field the anomalous scalings appear already in the sec
moment@37#.

The anomalous scalings of the magnetic fluctuations w
considered in @37# using the model of the
d-correlated-in-time turbulent velocity field. The correlatio
time in this model is independent of the scale of turbul
motions. Note that in this model the generation of magne
fluctuations is possible only forq5p.2. Taking into ac-
count the dependence of the correlation time on the scal
turbulent motions, we have shown~see Sec. III! that the
magnetic fluctuations can be generated for 3/2,p,3.

Now we discuss the anomalous scaling for the model w
the scale-dependent correlation time of turbulent motio
Consider the case when the magnetic Reynolds num
Rm,Rm(cr) and the magnetic fluctuations are caused by
external source. The condition Rm,Rm(cr) implies that there
is no self-excitation~i.e., exponential growth! of the mag-
netic fluctuations~see Sec. III!. The solution for the correla
tion function W(r ) in the inertial range is given by
W(r );r2(2p11)/2cos(blnr1w0) @see Eq.~30!#. This corre-
sponds to the anomalous scaling of the magnetic fluctuati
The normal scaling for the second moment of the magn
fluctuations is given byW(r );r 422p. The normal scaling
for the second moment of magnetic fluctuations occurs w
the flux of magnetic fluctuations over the spectrum is c
stant, i.e.,

^B2&k
th~k!

5const, ~35!

where^B2&k5*k
`M (k)dk, M (k) is the spectrum function o

magnetic fluctuations,th(k)5(hkk
2)21, and hk[^tu2&k

5*k
`h(k)dk. Dimensional analysis shows that under con

tion ~35! the spectrum of magnetic fluctuations~or vector
field! is given by
e

n

l-

.
r

nd

re

t
ic

of

h
s.
er
n

s.
ic

n
-

-

M ~k!}
1

k5E2~k!
}k2p25. ~36!

When p55/3 the spectrum of magnetic fluctuationsM (k)
}k25/3. Note that the spectrum~36! is similar to the
Obukhov-Corrsin spectrum for the passive scalar~see, e.g.,
@39–41#!.

Equation~36! yields the second moment of magnetic flu
tuationsW(r )}r 422p}r 32q, whereq52p21. Note that the
general solution of Eq.~17! with an external sourceI in-
cludes the solution~30! @or ~33!# and the solutionW(r )
}r 422p ~i.e., it includes solutions describing the anomalo
and normal scalings!. The obtained anomalous scalin
W(r );r2(2p11)/2cos(blnr1w0) can be presented as the re
part of the power-law functionr z with the complex exponen
z521/22p2 ib. This anomalous scaling is significantl
different from the normal scalingW(r )}r 422p and corre-
sponds to the deviation from the condition~35! of the con-
stant flux of magnetic fluctuations over the spectrum. T
obtained anomalous scaling is valid when the exponen
the energy spectrum of the turbulent velocity field
3/2,p,3. When 1,p,3/2 the anomalous exponent in
low-Mach-number compressible turbulent flow is real, i.
z521/22p1ub(s,q)u. In the case of incompressible turbu
lent flow (s50) this result coincides with that obtained
@37#.

V. DISCUSSION

In this study we have shown that the magnetic fluctu
tions can be generated for small magnetic Prandtl numb
which occur in many astrophysical and geophysical appli
tions. We have studied the effect of compressibility of t
low-Mach-number turbulent fluid flow. The compressibili
impairs the generation of magnetic fluctuations~i.e., the
threshold for the generation of magnetic fluctuations by t
bulent fluid flow with divuÞ0 is higher than that for the cas
of divergence-free fluid flow!. The reason is that the com
pressibility results in an increase of the scale of localizat
of the magnetic fluctuations. In larger scales the sca
dependent turbulent magnetic diffusion is larger. Howev
the contribution of the compressibility to the generation
the magnetic fluctuations proportional to (“–u)2 is smaller
in the larger scales. This results in an increase of the thre
old for the generation of magnetic fluctuations in a co
pressible fluid flow.

The model of very short scale-dependent correlation ti
of the turbulent velocity field is considered. It is shown th
the magnetic fluctuations can be generated even in the
mogorov turbulence~i.e., for p55/3). The anomalous scal
ing for the second moment of the magnetic field is found
the case 3/2,p,3. This anomalous scalingr z has the com-
plex exponent z521/22p2 ib. When 1,p,3/2 the
anomalous exponent in a low-Mach-number compress
turbulent flow is real:z521/22p1ub(s,q)u. In the case of
incompressible turbulent flow (s50) this result coincides
with that obtained in@37#. The equation for the high-orde
correlation functions of the magnetic field is derived. It
shown that the growth rates of the higher moments of
magnetic field are higher than those of the lower mome
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i.e., the spatial distribution of the magnetic field is interm
tent.

The presented analysis explains why in the numer
simulations by@20,21# the magnetic fluctuations with a zer
mean magnetic field were not generated. The paramete
the numerical simulation@21# with a zero mean field
(B50) are Rm<200 ands50.01. We have shown tha
even for incompressible turbulent fluid flow (s50) the
threshold of the excitation of the magnetic fluctuatio
Rm(cr)5412 in the case of Prm<1. Thus the magnetic fluc
tuations cannot be generated for the parameters used in@21#.
Note that the value Rm(cr)5412 also cannot be achieved
laboratory experiments. On the other hand, in astrophys
conditions Rm@Rm(cr) and Prm!1; therefore the magneti
fluctuations can be generated in the astrophysical conditi
This is in agreement with observations of the magnetic fie
in the Sun~see, e.g.,@21#!.

Note that the use of thed-correlated-in-time random pro
cess to describe a turbulent velocity field is certainly an
proximation. However, we study in the present paper t
specific problems:~a! conditions for the excitations of th
magnetic fluctuations~i.e., the threshold of the generatio
and growth rate of the magnetic fluctuations in the vicinity
the threshold! and~b! the anomalous scaling behavior, whic
is determined by the ‘‘zero mode’’ of the equations for hig
order correlation functions of the magnetic field~‘‘zero
mode’’ is a mode with zero growth rate!.

In the vicinity of the threshold the characteristic time
variations of the high-order correlation functions of the ma
netic field is much larger than the momentum relaxation ti
t(r ). The latter allows us to use thed-correlated-in-time
random process to describe a turbulent velocity field.

Note that the problem of the generation and dynamics
the magnetic fluctuations in the turbulent velocity field w
a finite correlation time is very important and is a subject
future investigations. A significant difference between t
results obtained with a very short correlation time and th
obtained with a Navier-Stokes turbulent velocity field pro
ably will be observed in the case of a strong deviation fr
the threshold of excitation of the magnetic fluctuations.
this case the problem will be strongly nonlinear and may
solved only numerically~if large magnetic Reynolds num
bers will be achieved in numerical simulations with sm
magnetic Prandtl numbers!.
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APPENDIX: DERIVATION OF THE EQUATIONS
FOR THE MEAN MAGNETIC FIELD

AND FOR THE HIGH-ORDER CORRELATION
FUNCTION OF THE MAGNETIC FIELD

We derive here the equation for the mean magnetic fi
and second moment of the magnetic field. We use here
stochastic calculus@15–17,22–25#.

If the total fieldHi is specified at timet, then we can
determine the total fieldHi(t1Dt) at time t1Dt by means
l
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s
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e
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e
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he

of substitutionst→t1Dt and t0→t in Eq. ~2!. The result is
given by

Hi~ t1Dt,x!5M $Gi j ~ t1Dt,t !H0 j@ t,j~ t1Dt,t !#%,
~A1!

where

j~ t1Dt,t ![jDt5x2E
0

Dt

v~ ts ,js!ds1A2hw~Dt !,

~A2!

ts5t1Dt2s, andj(t2 ,t1)[j t22t1
, i.e., js5j(t1Dt,ts).

In order to find the functionGi j (t1Dt,t) we solve Eq.~3!
by iterations. The result is given by

Gi j ~ t1Dt,t !'d i j1E
0

Dt

Ni j ~ ts ,js!ds

1E
0

Dt

Nik~ ts ,js!dsE
0

s

Nk j~ ts ,js!ds,

~A3!

where we keep terms greater than or equal toO„(Dt)2….
Expanding the functionHi(t,jDt) in a Taylor series in the
vicinity of the pointx yields

Hi~ t,jDt!.Hi~ t,x!1
]Hi

]xm
~jDt2x!m1

1

2

]2Hi

]xm]xn

3~jDt2x!m~jDt2x!n1•••. ~A4!

Using the equation for the Wiener trajectory~A2! we obtain

@j~ t2 ,t1!2x#m52E
0

t22t1
vm~ ts ,js!ds1A2hwm~ t22t1!,

~A5!

wherej(t2 ,t22s)[js . Expanding the velocityvm(ts ,js) in
a Taylor series in the vicinity of the pointx and using Eq.
~A5! yields

vm~ ts ,js!.vm~ ts ,x!2v l
]vm
]xl

s1A2h
]vm
]xl

wl~s!1•••.

~A6!

Here we assume that velocityv remains constant~time inde-
pendent! at small time intervals (0,Dt),(Dt,2Dt), . . . and
changes every small timeDt and that the velocity is statisti
cally independent at different time intervals. Substituting E
~A6! into Eq. ~A5! and calculating the integrals in Eq.~A5!
accurate up to;(t22t1)

2 terms yields

@j~ t2 ,t1!2x#m.2~ t22t1!vm1
1

2
~ t22t1!

2v l
]vm
]xl

2A2h
]vm
]xl

E
0

t22t1
wlds1A2hwm~ t22t1!

1•••. ~A7!
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The combination of Eqs.~A7! and ~A4! yields the formula
for the fieldHi(t,jDt),

Hi~ t,jDt!.Hi~ t,x!1
]Hi

]xm
S 2vmDt1

1

2
v l

]vm
]xl

~Dt !2

1A2hwm2A2h
]vm
]xl

E
0

Dt

wldsD
1
1

2

]2Hi

]xm]xl
@vmv l~Dt !212hwmwl

2A2hDt~vmwl1v lwm!#%, ~A8!

where we keep terms greater than or equal toO„(Dt)2….
Similar calculations for Ni j (t,jDt), accurate up to
;O„Dt…, yield

Ni j ~ t,jDt!5Ni j ~ t,x!1
]Ni j

]xm
~2vmDt1A2hwm!

1h
]2Ni j

]xm]xl
wmwl . ~A9!

Therefore,

E
0

s

Ni j ~ ts ,js!ds.Ni j ~ t,x!s2
1

2
vq

]Ni j

]xq
s2

1A2h
]Ni j

]xq
E
0

s

wqds

1h
]2Ni j

]xm]xl
E
0

s

wmwlds1•••, ~A10!

where we also keep terms greater than or equal
O„(Dt)2…. Using Eqs.~A10! and ~A9!, we calculate the
functionGi j (t1Dt,t) accurate up to;(Dt)2 terms,

Gi j ~ t1Dt,t !.d i j1Ni j ~ t,x!Dt1
1

2S 2vq
]Ni j

]xq
1NikNk j D

3~Dt !21A2h
]Ni j

]xq
E
0

Dt

wqds1•••. ~A11!

Using the identity

]

]xk
S v i ]vk]xj

D5
]v i
]xk

]vk
]xj

1v i
]2vk

]xk]xj
,

Eq. ~A11! can be written as

Gi j ~ t1Dt,t !.d i j1Ni j ~ t,x!Dt1Mi j ~Dt !2

1A2h
]Ni j

]xq
E
0

Dt

wqds1•••, ~A12!

where

Mi j5
1

2Fd i j ]

]xk
~bvk!2

]

]xj
~bv i !1

]

]xk
S v i ]vk]xj

2vk
]v i
]xj

D G .
to

The substitution of Eqs.~A12! and~A8! into Eq.~A1! allows
us to determineHi(t1Dt,x),

Hi~ t1Dt,x!.Hi~ t,x!1M S qi~x!Dt1pi~x!~Dt !2

1A2hQin~x!E
0

Dt

wnds D , ~A13!

where

qi5Hm

]v i
]xm

2vm
]Hi

]xm
2bHi1hwmwn

]2Hi

]xm]xn
~Dt !21,

pi5
1

2
HnF ]

]xm
S v i ]vm]xn

2vm
]v i
]xn

D2
]

]xn
~bv i !

1d in
]

]xm
~bvm!G1

]Hn

]xm
S bvmd in2vm

]v i
]xn

1
1

2
vk

]vm
]xk

d inD1
1

2
vmvn

]2Hi

]xm]xn
,

Qiw5Hj

]Ni j

]xn
2

]Hi

]xm

]vm
]xn

.

Averaging Eq.~A13! over the ensembles of the turbule
velocities, we obtain the equation for the mean fie
B(t1Dt,x)5^H(t1Dt,x)&. Calculating the limit @B(t
1Dt,x)2B(t,x)#/Dt for Dt→0 yields Eq.~6! for the mean
magnetic field. Now we calculate the correlation functi
hi j5^hi(t1Dt,x)hj (t1Dt,y)& by means of Eq.~A13!,
where the turbulent component of the magnetic fie
h(t,x)5H(t,x)2B(t,x). Now we determine @hi j (t
1Dt,x)2hi j (t,x)#/Dt for Dt→0. The result is given by Eq
~12!. We seek a solution for the second moment of the m
netic field in the form given by Eq.~16!. Multiplying Eq.
~12! by r i r j /r

2 and using the identities

3
r i r j
r 2

f mn

]2hi j
]rm]r n

5W9~F1Fc1rF c8!

1
4W8

r
~F1Fc1rF 8/2!, ~A14!

3
r i r j
r 2

] f m j

]r s

]his
]rm

5W8F32F812Fc81r 2S Fc8

r D 8G , ~A15!

3
r i r j
r 2

] f ml

]r l

]hi j
]rm

5rW8S Fc91
4Fc8

r D , ~A16!

3
r i r j
r 2

]2f i l
]r k]r l

hk j5W~rF c-15Fc9!, ~A17!

3
r i r j
r 2

]2f pl
]r p]r l

hi j5W~rF c-17Fc918Fc8/r !, ~A18!
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3
r i r j
r 2

]2f i j
]rm]r n

hmn5W~rF c-15Fc91F914F8/r !

1W8~rF c912F8!, ~A19!

we obtain Eq.~17! for the correlation functionW(t,r ).
Now we derive the equation for the high-order correlati

function Fs
$a j %(t1Dt,x$ j %)5^) j51

s ha j
(t1Dt,x( j ))& using

Eq. ~A13!:

Fs
$a j %5K )

j51

s

ha j
~ t,x~ j !!L

1M H (
j51

s K Dtqa j
~x~ j !! )

k51;k5” j

s

hak
~ t,x~k!!L
-
,

-

,

s.

.

1(
j51

s K ~Dt !2pa j
~x~ j !! )

k51;k5” j

s

hak
~ t,x~k!!L

1(
j51

s K ~Dt !2qa j
~x~ j !!qak

~x~k!!

3 )
n51;n5” j ,k

s

han
~ t,x~n!!L J , ~A20!

where $a j%5a1 ,a2 , . . . ,as and x
$ j %5(x(1),x(2), . . . ,x(s)).

Now we changeL̂ ik→L̂ak

a j and M̂ jqkp→M̂akap

a jaq in Eqs. ~13!

and ~14!. Use Eq. ~A20!, we find @Fs
$a j %(t1Dt,x$ j %)

2Fs
$a j %(t,x$ j %)#/Dt for Dt→0. The result is given by Eq

~19!.
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